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Abstract 
 

The microstructure and creep properties of platinum group metal 
(PGM) modified nickel based superalloys have been investigated.  
Alloys containing Pt and/or Ir along with variations in Cr, Ta, Re, 
Ru, and W exhibited relatively high solidus and liquidus 
temperatures.  Differential thermal analysis (DTA) showed a 
strong dependence of the γ´ solvus on the level of Ta.  The 
morphology of the γ´ precipitates was influenced by the presence 
of Cr, Ta, Ru, and W and ranged from cuboidal to semi-spherical.  
Compression creep tests were conducted at 1000°C at stresses 
ranging from 40-90 MPa.  Alloys containing approximately 8 
wt% Pt combined with Cr and Ta displayed the best resistance to 
creep deformation at stresses around 80 MPa.  Post-creep analysis 
of the rafted structures indicated that all PGM modified alloys 
without Ru and W possessed positive misfit with magnitudes 
ranging from ≈ 0.3 to 1.5%.  The partitioning of PGMs between 
the γ and γ´ phases and their resultant influence on creep 
performance is discussed. 
 

Introduction 
 

Nickel based superalloys for turbine blade applications require a 
combination of high oxidation resistance as well as high creep 
resistance [1, 2]. While ceramic thermal barrier coatings and 
intermetallic bond coats are employed with commercial 
superalloys to help mitigate high temperature environmental 
degradation [3, 4], high intrinsic oxidation resistance and 
mechanical strength is desirable in the event that these protective 
coatings fail.  Platinum group metal (PGM) elements are well 
known for their tendency to inhibit oxidation of NiAl-based bond 
coats [5-8].  More recently γ - γ´ bond coats with high oxidation 
resistance have been demonstrated [9, 10].  Thus, PGM-
containing γ - γ´ alloys could potentially be of interest either as 
bond coats or as bulk superalloys in applications where oxidation 
resistance is critical. 
 
Mechanical properties of γ - γ´ microstructures are sensitive to 
precipitate size and morphology [2, 11] and are therefore sensitive 
to partitioning of elements to the phases as well.  PGMs such as 
Pt, Ir, and Ru have atomic radii of 0.139, 0.136, and 0.134 nm, 
respectively.  Since the radii are much larger than Ni (0.125 nm), 

additions of these elements may substantially change the lattice 
parameters of either the γ or γ´ phases or their resultant misfit 
depending on their partitioning behavior.  Platinum (Pt) is known 
to preferentially partition to the L12 structure, occupying Ni sites 
[10, 12, 13].  Iridium (Ir) partitions near equally between γ and γ´, 
but may partition to a higher extent to either phase if elements 
such as Re, Cr, Ru, and/or W are present [14,15].  Since additions 
of Cr, Ta, and Re are likely to be present in superalloys containing 
PGMs, the partitioning behavior of the PGM elements is likely to 
be complex.  Alloys without high levels of refractory alloying 
additions often contain spherical precipitates [16] with misfit 
values in the range of 0 – 0.3%.  However, most commercial 
turbine blade alloys contain cuboidal γ´ precipitates due to the 
strong partitioning of refractory elements such as Re [17]. The 
relationship between precipitate morphology, elemental 
partitioning and creep strength is not fully understood for PGM 
additions.   
 
To date, research on the creep strength of nickel based superalloys 
containing PGMs has focused on Ru additions [18-25].  This is 
due to the fact that Ru-containing alloys are generally less 
susceptible to TCP formation, allowing the beneficial additions of 
solid solution strengthening elements, including Cr [26].  
Additionally, among the PGMs, the least expensive element is Ru.  
There has been only limited investigation of Ir additions to Ni-
base superalloys [27, 28]. Creep tests conducted at 900°C and 392 
MPa on single crystals (such as TMS-173) with and without Ir 
showed improved service life with Ir additions.  Creep properties 
of Pt-containing alloys are limited to one study on a Ni-base alloy 
containing approximately 10 wt% Pt with creep tests at 1000°C 
under a constant load of 103 MPa, where a relatively low creep 
rate of about 2.5 x 10-8 s-1 was observed [29].  However, this alloy 
was crept to rupture and information regarding its post-creep 
microstructure was not reported.  
 
The aim of this research was to investigate the influence of PGMs 
on various polycrystalline Ni-base superalloys with modified 
amounts of PGM additions, specifically, Pt and/or Ir.  Liquidus, 
solidus, and γ´ solvus temperatures were used to define optimal 
heat treatment conditions that produced stable γ/γ´ two-phase 
microstructures.  Compression creep tests were conducted to 
measure minimum creep rates and to observe the directional 
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Table 1: Compositional profile of DOE Phase I & II alloys with associated DTA results post-heat treatments. 

   
 
Figure 2 shows DTA of alloy D27 from Phase II.  The inset

but now with Ta, has a higher solvus, close to the solidus 
temperature, which is somewhat lowered by the Ta. 

highlights the heat flow occurring between 1200 to 1300°C.  From 
the inset, the γ´-solvus appears to be at 1270°C.    Above 1270°C, 
however, there are two endothermic reactions.  As will be 
discussed later, this is due to the presence of a strongly bimodal 
precipitate structure.  At 1329°C, incipient melting begins and the 
liquidus temperature is at 1385°C.  All alloys from Phase II 
displayed profiles similar to Figure 2.  
 
Microstructure 
Figure 3 displays how various elemental additions change the 
morphological characteristics of the γ´ precipitates.  All samples 
shown in Figure 3 were placed within the SEM chamber 
simultaneously and were imaged using the same 
brightness/contrast values in BSE mode.  Comparing alloys D7 
and Dx which differ in composition by 6.1 wt% Ta, this addition 
increases volume fraction of precipitates and results in a more 
cuboidal morphology.  Adding Re to Dx results in alloy D8, 

 
Phase I 

 

PGM 
Additions 

 
Composition 

(wt%) 
 

DTA 
(°C) 

Alloy Al Pt Ir Cr Re Ta 

 

Hf Ts 
(Solidus) 

TL 
(Liquidus) 

γ´ 
Solvus 

Ir 
D1 6.8 0 8.1 2.2 0 6.1 0.3 1379 1398 1337 
D3 6.8 0 8.4 4.6 0 0 0.3 1387 1420 1143 
D4 6.7 0 7.9 4.3 3.1 6 0.3 1365 1406 1337 

Pt 
D5 6.8 8.2 0 2.2 0 6.1 0.3 1368 1398 1321 
D7 7 8.5 0 4.5 0 0 0.3 1373 1405 1153 
D8 6.7 8 0 4.3 3.1 5.9 0.3 1351 1398 1337 

Ir-Pt 
D10 6.3 7.6 7.5 2 2.9 5.6 0.3 1375 1417 1333 
D12 6.4 7.8 7.6 4.1 0 5.8 0.3 1363 1400 1336 
D13 6.6 7.9 7.8 4.2 3 0 0.3 1366 1407 1172 

Higher 
Pt 

D15 6.5 15.1 0 2 2.9 5.6 0.3 1362 1403 1341 
D17 6.4 15.5 0 4.1 0 5.7 0.3 1347 1383 1333 
D18 6.5 15.8 0 4.2 3 0 0.3 1383 1424 1152 

 
Phase II 

 

PGM 
Additions 

 
Composition 

(wt%) 
 

DTA 
(°C) 

Alloy Al Pt Ir Cr Re Ta Ru W Hf TS 
(Solidus) 

TL 
(Liquidus) 

γ´ 
Solvus 

Pt 
D19 6.5 7.8 0 4.2 3 5.8 1.6 2.9 0.3 1353 1385 1268 
D22 6.3 7.6 0 4 2.9 5.6 3.1 5.7 0.3 1350 1386 1266 

Ir-Pt D24 6.1 7.4 5.8 3.9 2.8 5.5 1.5 5.6 0.3 1365 1404 1291 
D25 6.2 7.5 5.9 4 2.9 5.5 3.1 2.8 0.3 1364 1403 1290 

Higher 
Pt D27 6.1 14.8 0 3.9 2.8 5.5 1.5 2.8 0.3 1352 1385 1270 

Figure 2: DTA of alloy D27 . The white arrows refer 
to the solvus, solidus, and liquidus marks.  

Exothermic 
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Figure 3: Changes in microstructure (Phase I) due to additions of various elements.  All alloys contain (in wt%) 
(6.7-7)Al-0.3Hf.  Alloy Dx was used for microstructural studies only and was heat treated similarly to Phase I. 
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which has a fully cuboidal microstructure.  Adding Cr from D5 to 
Dx results in a z-contrast inversion of the γ and γ´ precipitates, 
indicating that the addition of higher Cr to the system changes the 
partitioning of elements between the two phases.  Considering Dx 
compared to D12, the Ir addition, does not change the morphology 
appreciably.  From the TEM micrographs of Figure 3, additions of 
Ta and/or Cr result in cuboidal precipitate morphologies with well 
defined matrix channels.  The strain energy in the Ir containing 
alloy is apparent with γ´ particle splitting observed in the 
particles.  Additionally, from Figure 3 it is apparent that these 
alloys (and other alloys not shown here) have coherent γ - γ´ 
interfaces. 
   
Figure 4 shows SEM micrographs of heat treated alloys from the 
Phase II matrix.  Aside from D27, all other alloys display a semi-
spherical morphology, which is indicative of near-zero 
precipitate-matrix misfit [25].  Alloys D25 and D27 retain large γ´ 
particles, ranging from 3 to 7 µm in diameter following solution 
treatment.  These particles, which did not undergo dissolution up 

to a few degrees below the solidus, are consistent with the 
presence of the DTA peak at 1329°C, which was observed in 
Figure 2.  All alloys in Phase II displayed large γ´ particles that 
did not fully go into solution.  Figure 5 shows TEM views of the 
microstructure of Phase II alloys after heat treatment.  Precipitate 
morphologies range from semi-spherical to semi-cuboidal, as in 
alloys D19 and D22.  Furthermore, isolated dislocations are 
apparent within some of the alloys, as shown for D27.  
 
Creep and Post-Creep Analysis 
Table 2 lists alloys crept at 1000°C in compression.  Alloys are 
designated either by Phase I or Phase II and are further grouped 
by their respective PGM additions.  Phase I alloys, aside from D3, 
all have minimum creep rates of the same order magnitude of 10-8 
s-1.  In this regard, creep strengths can be estimated by the 
comparison of the magnitudes of the applied stresses needed to 
establish this creep rate.  Alloys containing only Ir were the 
weakest, whereas alloys containing only Pt exhibited the highest 

Figure 4: Microstructure of Phase II alloys as-aged. (a) - (e) represents alloys D19, D22, D24, D25, and D27, respectively.  
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Figure 5: Microstructure of Phase II alloys. From left to right: D19, D22, and D27.  
Images were taken off B = [001] axis. 
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Table 2.  Compression Creep Table of Phase I and II PGM alloys 

 

 
 
 

 
 
 
 

Phase I 
All alloys contain (in wt%):Ni-(6.3-7.0)Al-0.3Hf 

PGM 
Additions 

Composition Stress 
MPa / (ksi) Creep Rate (s-1) Total Time 

(Hrs.) Alloy Pt Ir Cr Re Ta 

Ir 
D1 0 8.1 2.2 0 6.1 55 / 8.0 1.3·10-8 168.1 
D3 0 8.4 4.6 0 0 60 / 8.7 1.3·10-7 21.5 
D4 0 7.9 4.3 3.1 6 55 / 8.0 5.6·10-8 58.4 

 Pt 
D5 8.2 0 2.2 0 6.1 80 / 11.6 1.6·10-8 80.2 
D7 8.5 0 4.5 0 0 80 / 11.6 5.5·10-8 32.5 
D8 8 0 4.3 3.1 5.9 100 / 14.5 RUPTURE 

Ir-Pt 
D10 7.6 7.5 2 2.9 5.6 55 / 8.0 7.9·10-8 47.5 
D12 7.8 7.6 4.1 0 5.8 70 / 10.2 1.2·10-8 196.1 
D13 7.9 7.8 4.2 3 0 65 / 9.4 6.0·10-8 63.3 

Higher 
Pt 

D15 15.1 0 2 2.9 5.6 60 / 8.7 6.2·10-8 58.7 
D17 15.5 0 4.1 0 5.7 60 / 8.7 4.4·10-8 69.3 
D18 15.8 0 4.2 3 0 50 / 7.3 5.6·10-8 230 

Phase II 
All alloys contain (in wt%): Ni-(6-6.5)Al-(3.8-4.2)Cr-(2.8-3.2)Re-(5.3-5.8)Ta-0.3Hf 

 Composition Stress 
MPa /ksi Creep Rate (s-1) Total Time 

(Hrs.) Alloy Pt Ir Ru W 

Pt D19 7.8 0 1.6 2.9 80 / 11.6 RUPTURE 
D22 7.6 0 3.1 5.7 65 / 9.4 3.8·10-8 103.3 

Ir-Pt 
D24 7.4 5.8 1.5 5.6 75 / 10.9 1.4·10-7 28.5 
D25 7.5 5.9 3.1 2.8 70 / 10.2 3.4·10-8 79.3 

Higher 
Pt D27 14.8 0 1.5 2.8 55 / 8.0 5.7·10-8 41.7 

Figure 6: Directional coarsening of various Phase I (a - c) and II (d - f) alloys.  The white arrows indicate the direction of applied stress. All 
micrographs were imaged parallel to the applied stress axis. (a) – (c) represent alloys D4, D10, and D12, and (d) – (f) are D22, D24, and 

D27, respectively. 

1 μm  1 μm 1 μm 

1 μm  1 μm 1 μm 

γ´  γ´
γ´

e  fd 

a  b  c
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creep strengths.  A combination of Ir and Pt gave creep resistances 
slightly higher than the Ir-only alloys but not as high as the Pt-
only PGM alloys.  The Phase II alloys exhibit creep rates within 
the magnitude of 10-8 s-1, aside from D24.  Considering the similar 
creep rates, D25 sustained the highest stress while D22 followed.  
Comparing Phase I and Phase II alloys, PGM alloys containing 
both Ir and Pt gave high overall creep resistance while alloys 
containing Pt in excess of 14 wt% showed lower creep strengths 
regardless of other alloying additions.     
 
Figure 6 shows the directional coarsening behavior for Phase I 
and II alloys. The white arrows indicate the direction of the 
applied compressive stress.  In alloys D4, D10, and D12, 
precipitates elongated transverse to the stress axis.  The γ´ in these 
alloys displays dark contrast compared to the bright contrast of the 
matrix.  The elongation of the γ´ normal to the applied 
compressive stress axis is indicative of positive misfit behavior.  
Some precipitates in these alloys are not perfectly aligned parallel 
to the stress axis due to their polycrystalline structure with 
equiaxed grains not aligned along the <001> direction.  Overall, 
all alloys from the four PGM groups in Phase I displayed rafting 
consistent with positive misfit.  Here, misfit is defined as: 
 
                                     2  ´  

´                                   Eq.2                                                                                   

 
where aγ and aγ´ are the lattice parameters of the matrix and 
precipitate, respectively. 
  
The additions of Ru and W to the Phase II alloys resulted in a 
different precipitate coarsening behavior.  The bottom row of 
Figure 6 shows that the coarsened precipitates do not have a 
preferential orientation, without elongation either parallel or 
perpendicular to the stress axis.  This type of behavior is neither 
positive nor negative but is representative of a misfit value that is 
close to zero. Near-zero misfit is consistent with the near-
spherical precipitate morphologies for these alloys in the as heat-
treated state. 
 
Lattice Misfit Estimation 
Figure 7 highlights some of the interfacial dislocations existing in 
post-creep specimens.  Using equation (1), lattice misfits were 
estimated from these interfacial dislocation alloys from Phase I.  
Figure 7 (a) – (c) are Phase I alloys and (d) and (e) are Phase II 
alloys.  The estimated lattice misfits (positive) for alloys D3, D5, 
and D17 were 0.24, 1.0 and 0.94%, respectively.  Overall, alloys 
containing only Ir displayed magnitudes ranging from 0.2 - 0.35% 
whereas alloys with higher Pt had higher misfit, ranging from 0.9 
- 1.5%.  PGM alloys with Ir and Pt averaged around 0.3 - 0.6% 
and alloys containing Pt at lower levels were 0.45 - 1.3%.  High 
temperature synchrotron X-ray experiments on selected alloys 
confirm positive misfit at high temperature [33].  Misfit 
estimations for Phase II alloys could not be ascertained, even 
though coarsening occurred, due to low densities and irregularly 
distributed dislocations.  In addition, dislocations within the 
precipitates were not as pronounced in Phase II alloys as they 
were within the Phase I group. 
 

Discussion 
 

Precipitate Morphology and Directional Coarsening 

The microstructure and directional coarsening of PGM-containing 
superalloys is sensitive to the type of PGM addition and its 
influence on partitioning of other elements in the system.  The 
unusual feature of the Pt and Ir-containing superalloys studied 
here is the existence of a positive precipitate-matrix misfit, unlike 
alloys with Ru additions [25, 26].  In the Pt-containing alloys 
studied here the positive misfit occurs due to the strong 
partitioning of the Pt to the γ´ phase.  However, given the range of 
precipitate morphologies observed, Figure 3, it is clear that the 
partitioning is also influenced by other alloying additions.  For 
example, Cr and/or Ta additions can change the morphology of γ´ 
phase towards cuboidal, shown in Figure 3.  Increasing Cr content 
changes partitioning behavior of some of the heavy elements in γ´ 
more favorably into the matrix as indicated by the z-contrast from 
D5 to Dx.  Since Ta is known to preferentially partition to the L12 
[2, 34], then it is likely that higher Cr additions partition Pt to a 
higher extent into the matrix.  Ir does not have a dramatic effect 
on precipitate morphology since this element partitions near 
equally between both phases, as shown from Dx to D12. 
 
Directional coarsening, also known as ‘rafting’, occurs at high 
temperatures under an applied uniaxial stress [35-37].  During 
compression tests, ‘negative’ type rafting behavior is associated 
with the coalescence of the precipitates parallel to the stress axis 
while ‘positive’ type behavior is normal to the axis.  All Phase I 
alloys investigated displayed positive type rafting behavior as 
seen in the SEM images of Figure 6.  This again, is due to Pt 
preferentially partitioning to the precipitate, thereby increasing the 
aγ´ lattice parameter. The higher Pt containing alloys from Phase I 
would have higher γ´ lattice parameters which are greater than 
those containing the lesser amounts of Pt.  This increase in the 
magnitude of the misfit, observed in Figure 7 for Phase I, results 
in closely spaced dislocations at the γ - γ´ interface.  Alloys that 
contain Ir or Ir and Pt still exhibit positive type rafting behavior 
due to strong partitioning of platinum and tantalum, with the 
presence of Ir.   
 
While Ru and W typically partition more equally between both 
phases [15, 38], the spherical nature of the particles in Phase II 
alloys may suggest that Ru and W are partitioning with the 
presence of the PGM elements to a higher extent to the matrix, 
reducing the misfit from strongly positive to near-zero.  It has 
been observed earlier [15] that the partitioning of Ir was 
influenced by elements such as Ru and W, which can result in 
increased Ir in the precipitate.  Atom probe experiments similar to 
those of Tin et al. [38, 39] would clearly be useful for further 
elucidation of partitioning in these PGM alloys.  SEM images of 
Figures 4 and 5 indicate that additions of Ru and W have 
increased aγ, implying that a reasonable amount of these elements 
are in the γ matrix.  Although magnitudes could not be verified 
through TEM, coarsening was observed in all Phase II samples 
with no preferential direction.  Since this is indicative of near-zero 
misfit, this could potentially be a problem for high temperature 
creep deformation since the gamma particles do not coalesce 
uniformly to form rafts, leaving vertical and horizontal matrix 
channels open for dislocations to glide during creep.   
  
Creep Properties 
Alloys containing low Pt or a combination of Ir and Pt 
demonstrated the highest creep strengths.  Although the high Pt 
alloys displayed misfit magnitudes of about 1.0%, they were the 
least resistant to creep deformation.  Even though alloys 

7



containing Ir displayed misfit values around 0.3%, Ir is apparently 
not effective as a creep-strengthening element and stresses greater 
than 60 MPa were not sustanined.  From Table 2, comparing D1 
to D5, where the only difference is the PGM addition 
demonstrates that Pt strengthens the L12 phase while Ir does not. 
This is unexpected since Ir interdiffusion in Ni is slow [40]. 
Further alloying with Ta improved creep resistance at high 
temperature which would be expected since Ta is known as a 
strengthening element for the L12.  Direct comparison between D5 
and D7 indicates that Ta helps reduce total strain accumulation 
over longer periods of time.  Thus a likely explanation for the 
improvement in creep strength due to Ta is that this element 
increases the shearing resistance of the precipitates after 
coarsening has occurred, forcing dislocations to move only within 
the matrix.  However, many samples from Phase I, including Ta-
containing alloys, did contain dislocations within the precipitates 
following creep deformation.  Further TEM analyses of the 
substructure following creep over a wider range of testing 
conditions would be useful. 
 
Considering the creep properties of bond coat materials at 
temperatures around 1000°C, alloys investigated here show creep 
strengths that are nearly 40-50 MPa higher than typical bond coats 
composed of B2 NiAl-based or β-γ NiCrAlY materials [41-43].  
(Ni,Pt)Al bond coats, crept at 1000°C at stresses near 80 MPa, 
displayed creep rates of the magnitude 10-4 s-1 with Pt additions in 
excess of 15 wt%.  Interestingly, alloys investigated here that 
displayed the highest creep strengths contained at most 8 wt% Pt 
and 8 wt% Ir, which is considerably less than most Pt-modified 
bond coats. 
 
Comparison of the PGM alloys studied here to commercial 
superalloys shows that the PGM alloys do not possess the same 
degree of creep resistance.  Polycrystalline superalloy MAR-
M247 can sustain a creep rate of 10-8 s-1 at 982°C at a stress of 

172 MPa [44], while the alloys investigated here can tolerate 
approximately 80 MPa under the same creep conditions. 
However, many aspects of the present alloys have not been 
optimized, including solid solution strengthening of both phases, 
aging heat treatments and additions of grain boundary 
strengthening elements such as C and B.  Thus, in their present 
form, the creep resistance of the PGM alloys is higher than 
presently available bond coats but lower than high refractory cast 
alloys.   
 

Conclusions 
 

Ni-base superalloys containing Pt and/or Ir have been investigated 
over a relatively wide range of compositions, with the following 
observations: 
 
1.) Pt preferentially partitions to γ´, which can make misfit 
magnitudes greater than zero up to 1.0%.  γ´ morphology varies 
considerably based with alloying elements added beyond Pt and 
Ir.  Cr and Ta have a strong effect on precipitate morphology and 
partitioning.  Ru and W lower misfit to near zero, resulting in near 
spherical precipitate morphologies.  
   
2) Ta additions in Phase I alloys raise the γ´ solvus temperature 
close to the solidus mark, leaving a solution treatment window of 
about 20-50°C, depending on the level of PGM additions.   
 
3) Alloys with a combination of Ir and Pt or only Pt possess the 
highest creep strengths.  Creep strengths exceeded those of 
conventional bond coats but are lower than high refractory content 
case superalloys at 1000°C. 
 
4) Directional coarsening shows that Phase I alloys display 
positive type behavior.  Higher Pt contents increase aγ´ which 
increases misfit magnitude.  Misfit magnitudes were near-zero for 

Figure 7:  γ - γ´ interfacial dislocations for lattice misfit estimation on Phase I and II alloys.  Alloys (a)-(c) are 
D3, D5, and D17.  Images (d) and (e) are D22 and D24.  Images were taken off the B = [001] zone axis. 

d  e

a  b  c
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Phase II alloys and SEM and TEM images showed coarsening 
with no preferential orientation of precipitates in relation to the 
applied compressive stress. 
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